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Manipulating amino acid (AA) intake in Drosophila can

profoundly affect lifespan and reproduction. Remarkably, AA

manipulation can uncouple the commonly observed trade-off

between these traits. This finding seems to challenge the idea

that this trade-off is due to competitive resource allocation, but

here we argue that this view might be too simplistic. We also

discuss the mechanisms of the AA response, mediated by the

IIS/TOR and GCN2 pathways. Elucidating how these pathways

respond to specific AA will likely yield important insights into

how AA modulate the reproduction-lifespan relationship. The

Drosophila model offers powerful genetic tools, combined with

options for precise diet manipulation, to address these

fundamental questions.
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Introduction: dietary effects on lifespan and
reproduction
Nutrition plays a primary role in shaping the physiology,

life history and behavior of organisms, and nutritional

interventions can have substantial health benefits [1].

Dietary restriction (DR), that is, the reduced intake of

nutrients without malnutrition, has been the most widely

studied nutritional intervention since the 1930s when it

was first demonstrated that DR extends lifespan in rats.

Since then, a large body of research has established

positive effects of DR on longevity and age-related

pathology in numerous organisms, ranging from yeast

and worms to insects and mammals. At the same time,

DR typically reduces reproductive output [2,3]. The fact

that reduced food intake extends lifespan at the expense

of reproduction makes the study of DR, and of dietary
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effects more generally, of key significance for our under-

standing of the commonly observed trade-off between

reproduction and longevity [4,5].

Originally, reduced intake of calories was thought to be

responsible for the lifespan-extending effects of DR, but

this view began to shift when studies in Drosophila
showed that lifespan extension under DR does not

depend on caloric restriction [5,6]. By testing diets with

different nutrient compositions (‘nutritional geometry

framework’) [7], it was found that the ratio of proteins

to carbohydrates (P:C ratio), not overall energetic content,

affects lifespan and reproduction in Drosophila [8,9].

Today, there is growing evidence that especially dietary

proteins play a major role in mediating the effects of DR

[10,11] (but see [12]). Remarkably, beyond the effects of

the proteins themselves, recent work suggests that the

building blocks of proteins, that is, specific amino acids

(AA), can profoundly impact lifespan and associated traits.

For example, in both flies and mice, restriction of dietary

methionine can extend lifespan to the same extent as DR

[13–16].

Here, we give a brief review of how AA modulate lifespan

and reproduction, and the trade-off between these traits.

We also provide a short overview of the molecular mech-

anisms by which AA might control these two traits and

their relationship. We focus on recent research in the

Drosophila model, given that this system combines unri-

valed genetic tools, a solid understanding of the effects of

nutritional interventions, and the availability of holidic

diets that now allow researchers to precisely control

individual dietary components [14,17–19].

Amino acids significantly impact lifespan and
reproduction
The finding that protein restriction can mediate the

effects of DR opens up the possibility that specific AA

might be responsible for the effects on lifespan and

reproduction. Consistent with this idea, restriction of

dietary methionine has been found to promote longevity

in rats and mice [13,20]. Similarly, Troen et al. observed

that reduced dietary levels of methionine optimize Dro-
sophila lifespan, although too low levels were detrimental

[14].

In one of the most comprehensive studies to date, Grand-

ison and colleagues fed flies a lifespan-extending

restricted diet (i.e. DR) and then added back specific

nutrients to determine which nutrients would restore the
www.sciencedirect.com
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reduced lifespan and high fecundity of fully fed flies [15].

While adding back carbohydrates, lipids or vitamins had

no effect, adding back all AA to the restricted diet

shortened lifespan and restored fecundity to the level

seen in fully fed flies. Further experiments showed that

this lifespan-shortening and fecundity-increasing effect is

mainly due to essential AA (EAA, i.e. those AA that

cannot be synthesized by the body and must be supplied

by the diet) and not due to non-essential AA. Next, the

authors investigated the role of individual AA. While

adding back all EAA (DR + EAA) shortened lifespan

and restored fecundity, adding back all EAA minus

methionine (DR + EAA � M) failed to shorten lifespan,

indicating that methionine restriction can promote lon-

gevity. Remarkably, by manipulating each EAA individ-

ually Grandison and coauthors found that adding methi-

onine alone to the restricted diet (DR + M) restores

fecundity to normal levels but without reducing the long

lifespan of DR flies (also see [21]). These findings suggest

that methionine is — at least partly — responsible for the

lifespan-shortening effect of full feeding, even though

methionine alone (DR + M) might be insufficient to

reduce longevity. In support of this idea, Lee and colla-

borators have recently found that the lifespan-extending

effect of methionine restriction depends on the overall

concentration of other AA and requires a low AA status

[16]. Also, the effects of AA on lifespan in Queensland

fruit flies depend on other nutrients, including vitamins,

minerals and cholesterol [22].

The most fascinating implication of the work of Grand-

ison et al. is that fine-tuning the levels of specific dietary

AA can apparently increase lifespan without any loss of

fecundity or fertility [15]. Lifespan extension might thus

be realized without costs by providing an ‘optimal’ diet.

To achieve such a diet, Piper et al. [23��] used information

on the exome, that is, all protein-coding genes in the

genome, to determine which proportions of AA an animal

requires. The authors found that this exome-matched

diet extends lifespan without costs in terms of growth

or reproduction. Moreover, a comparison of the exome-

based diet to a yeast-based diet revealed that methionine

is the most limiting AA, which might explain why fecun-

dity is particularly sensitive to this specific AA [23��].
However, in sterile workers of the Argentine ant (Line-
pithema humile) ant, an exome-based diet failed to increase

lifespan [24��]. Whether this failure might somehow have

to do with the fact that the workers were sterile, thus

rendering nutrient allocation to reproduction impossible,

remains an open question.

Dietary uncoupling of the reproduction-
lifespan trade-off
The reproduction-lifespan trade-off associated with DR

is often interpreted in terms of differential allocation of

resources between the competing demands of reproduc-

tion versus somatic maintenance (the ‘resource allocation’
www.sciencedirect.com 
model). Since DR typically promotes adult survival at the

cost of decreased fecundity or fertility, DR might repre-

sent an adaptive plastic response that allows organisms to

survive poor dietary conditions by reallocating energy

away from reproduction to somatic maintenance and

survival until optimal conditions have returned

[4,5,25,26]. Alternatively, the ‘direct constraints’ model

postulates that reproductive processes cause direct dam-

age or impair maintenance and survival [4,5].

The finding that a simple dietary intervention, that is,

adjusting the levels of a single AA, can extend lifespan

without apparent growth or reproductive costs clearly

challenges both models [4,15,16,23��,27]. For example,

Grandison et al. concluded that — since adding methio-

nine back to a restricted diet can increase fecundity

without reducing lifespan — the reduction of lifespan

under full feeding does not result from nutrient realloca-

tion away from survival and somatic maintenance to

reproduction [15]. In support of this idea, DR can extend

Drosophila lifespan even when flies are made sterile,

suggesting that DR does not extend lifespan because it

reduces reproduction [28] (but see conflicting evidence in

Caenorhabditis elegans [29]).

While the above work clearly demonstrates that both

lifespan and reproduction can be maximized under spe-

cific dietary conditions [15,16,23��], it might be premature

to dismiss trade-offs as a proximate explanation for the

effects of DR altogether. The fact that DR with methio-

nine supplementation can restore high fecundity while

lifespan remains extended does not logically imply that

DR-induced lifespan extension is independent of

resource reallocation. It rather suggests that methionine

is a major limiting factor for egg production. Since on

average methionine does not consistently affect lifespan

across dietary conditions yet generally increases fecundity

[16], allocation or reallocation of methionine seems to

mainly influence reproduction, not lifespan. Methionine

might thus not be directly subject to competitive resource

allocation or reallocation between reproduction versus life-
span when conditions change from full feeding to DR, or

vice versa. In fact, when methionine is raised to a level

that does not limit egg production anymore, the lifespan-

reproduction trade-off is once again observed: increasing

EAA levels further enhance fecundity at the cost of

reduced lifespan [15,16]. Together, these findings sug-

gest that on average probably most EAA tend to negatively

affect lifespan, while positively influencing fecundity.

Reproduction and survival thus seem to have competing

demands with regard to AA levels: reproduction requires

high AA levels, but such high levels shorten lifespan.

However, one aspect of the reproduction-longevity trade-

off that has often been overlooked is sex-specificity.

Typically, effects of DR on this trade-off have been

studied predominantly in females [8,9], presumably
Current Opinion in Insect Science 2017, 23:118–122
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due to the higher investment of females than males into

reproduction. Interestingly, females and males differ

substantially in their response to DR [30–32]; moreover,

the two sexes exhibit a dramatically different genetic

architecture of lifespan [33]. It will thus be interesting

to see studies that contrast the physiological conse-

quences of specific dietary AA manipulations between

females and males.

Another open question is how manipulation of methio-

nine or other AA affects fitness components other than

lifespan and fecundity, for example stress resistance or

immunity. At the level of fitness, trade-offs might be

multidimensional and involve more than two traits. For

example, previous evidence suggests that methionine is

important for proper functionality of the immune system

[34] — methionine might thus improve immunity at the

expense of longevity.

Altogether, the observations that single dietary AA can

have a profound impact on lifespan and reproduction,

combined with the finding that DR is independent of

caloric content itself [5,6], indicate that the field should

revise simplistic notions of ‘resource’ or ‘energy’ alloca-

tion trade-offs. Further in-depth studies of how single

dietary components affect various fitness traits, including

reproduction and lifespan, would provide a more com-

prehensive understanding of commonly observed life-

history trade-offs [15,16,23��].

Amino acids affect lifespan and reproduction
via nutrient sensing
How, mechanistically, do AA affect reproduction and

lifespan? A prime candidate is the insulin/insulin-like

growth factor 1 (IIS)/target of rapamycin (TOR) signaling

pathway, which is known to be a major regulator of

longevity in worms, flies and rodents [35]. For example,

the centrally important transcription factor foxo down-

stream of IIS modulates the DR response in flies [36,37],

and the translational repressor 4E-BP downstream of

TOR is functionally required for lifespan extension upon

DR [38]. Moreover, given that insulin secretion in

response to leucine and isoleucine uptake is controlled

through a TOR-dependent mechanism [39], it is tempt-

ing to speculate that AA might act through TOR to affect

lifespan and fecundity. The results of Grandison et al. and

of Lee et al. corroborate this idea [15,16].

Grandison et al. found that adding back essential AA to

restricted diet decreases lifespan, but only to a minor

extent in flies carrying a dominant-negative (DN) form of

the insulin-like receptor InR, showing that the negative

effects of AA on longevity require a functional receptor

[15]. Furthermore, dietary methionine supplementation

is unable to promote fecundity in these mutants, suggest-

ing that the fecundity-promoting effects of methionine

also rely on InR function. Similarly, Lee and colleagues
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found that under conditions where methionine reduction

extends lifespan of wildtype flies, restriction of methio-

nine no longer extends lifespan in InR DN mutants or in

flies that overexpress the TOR antagonist tuberous scle-

rosis complex 2 (TSC2) [16]. Moreover, a recent study by

Emran and colleagues has reported that TOR signaling,

but apparently not IIS, is required for the effects of EAA

on fecundity and lifespan [40]. These findings are also

interesting given the observation that methionine-defi-

cient mice exhibit lowered levels of serum IGF-1 and

insulin [13].

In addition to IIS/TOR, a number of other genes and

pathways have been shown to play a role in AA signaling.

For example, the general control nonderepressible 2

(GCN2) protein provides a conserved AA sensing mech-

anism that is independent of AA identity [11,41]. In

Drosophila larvae, GCN2 signaling in a small subset of

dopaminergic neurons is required for the avoidance of

diets with unbalanced AA levels, a process that seems to

be independent of TOR signaling [42]. It will be clearly

of great interest to learn whether and how this mechanism

contributes to the AA modulation of reproduction and

lifespan.

Finally, it will be interesting to study how sensory per-

ception of AA modulates lifespan and reproduction, given

that olfactory perception and taste can affect the lifespan

of flies independent of their actual food intake [43,44].

These findings raise the possibility that perception of AA

alone might impact lifespan. The first gustatory receptor

for AA in flies has recently been identified [45�]. In larvae,

this receptor, IR76B, responds to a subset of AA, includ-

ing methionine, and is required for the behavioral attrac-

tion to certain AA. These results demonstrate that flies

can sense and respond to specific AA. Furthermore,

internal AA status and reproductive state influence

whether flies select or reject a particular diet [46,47�].
It is particularly noteworthy in this context that lifespan

and fecundity have distinct optima at different dietary P:

C ratios and that flies can self-regulate P:C intake in a way

that maximizes lifetime fecundity at the expense of

longevity [8]. An improved future understanding of the

interplay of these mechanisms might explain how flies

can maintain tight nutritional homeostasis and balance

reproduction and lifespan in a way that optimizes fitness.

Concluding remarks
We end with a potentially important caveat for experi-

ments designed to study the effects of AA on lifespan and

reproduction. Dietary AA do not occur in isolation: most

AA in natural diets are part of dietary proteins. As seen

above, the effects of methionine on reproduction and

lifespan depend critically on the background status of

other AA and other nutrients. Moreover, recent research

in ants suggests that directly providing free AA in a

defined diet shortens lifespan considerably more than
www.sciencedirect.com



Amino acids and life history Hoedjes, Rodrigues and Flatt 121
supplying the equivalent amount of AA via whole pro-

teins, potentially due to a difference in the uptake of AA

versus proteins, or by bypassing protein digestion. In

addition, providing free AA affects the chosen intake

ratio of proteins to carbohydrates, suggesting that the

perception of free AA and whole proteins differ [24��].
These findings thus indicate that results based on manip-

ulating specific AA in chemically defined diets need to be

interpreted with some caution. Nonetheless, there can be

no doubt that the body of work we have reviewed here is

greatly advancing our understanding of how diets and

their components impact organismal reproduction and

lifespan.
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amino acids in a dopaminergic circuitry promotes rejection of
an incomplete diet in Drosophila. Cell 2014, 156:510-521.

43. Libert S, Zwiener J, Chu X, Vanvoorhies W, Roman G, Pletcher SD:
Regulation of Drosophila life span by olfaction and food-
derived odors. Science 2007, 315:1133-1137.

44. Ostojic I, Boll W, Waterson MJ, Chan T, Chandra R, Pletcher SD,
Alcedo J: Positive and negative gustatory inputs affect
Drosophila lifespan partly in parallel to dFOXO signaling. Proc
Natl Acad Sci U S A 2014, 111:8143-8148.

45.
�

Croset V, Schleyer M, Arguello JR, Gerber B, Benton R: A
molecular and neuronal basis for amino acid sensing in the
Drosophila larva. Sci Rep 2016, 6:34871.

The authors describe a chemosensory receptor expressed in taste
neurons of D. melanogaster larvae that is activated by specific AA,
including methionine. These taste neurons mediate feeding behavior in
response to dietary AA imbalance.

46. Toshima N, Tanimura T: Taste preference for amino acids is
dependent on internal nutritional state in Drosophila
melanogaster. J Exp Biol 2012, 215:2827-2832.

47.
�

Corrales-Carvajal VM, Faisal AA, Ribeiro C: Internal states drive
nutrient homeostasis by modulating exploration-exploitation
trade-off. eLife 2016, 5:e19920.

The authors use video-tracking to examine how internal AA status affects
feeding behavior and diet choice. Virgin Drosophila females fed an AA-
deficient diet consume more yeast than sucrose, while virgin females that
are not AA-deficient do the opposite. Moreover, AA-deficient flies spend
most of their time near known yeast patches.
www.sciencedirect.com

http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0390
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0390
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0390
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0390
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0395
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0395
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0395
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0395
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0400
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0400
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0400
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0405
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0405
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0410
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0410
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0410
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0415
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0415
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0415
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0420
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0420
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0420
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0420
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0425
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0425
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0425
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0425
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0430
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0430
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0430
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0435
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0435
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0435
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0435
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0440
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0440
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0440
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0445
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0445
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0445
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0450
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0450
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0450
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0455
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0455
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0455
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0455
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0460
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0460
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0460
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0465
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0465
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0465
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0470
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0470
http://refhub.elsevier.com/S2214-5745(17)30020-2/sbref0470

	Amino acid modulation of lifespan and reproduction in Drosophila
	Introduction: dietary effects on lifespan and reproduction
	Amino acids significantly impact lifespan and reproduction
	Dietary uncoupling of the reproduction-lifespan trade-off
	Amino acids affect lifespan and reproduction via nutrient sensing
	Concluding remarks
	References and recommended reading
	Acknowledgements


